Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(10): 1840-1850, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36116084

RESUMO

Bacteria harboring glycerol/diol dehydratase (GDH) encoded by the genes pduCDE metabolize glycerol and release acrolein during growth. Acrolein has antimicrobial activity, and exposure of human cells to acrolein gives rise to toxic and mutagenic responses. These biological responses are related to acrolein's high reactivity as a chemical electrophile that can covalently bind to cellular nucleophiles including DNA and proteins. Various food microbes and gut commensals transform glycerol to acrolein, but there is no direct evidence available for bacterial glycerol metabolism giving rise to DNA adducts. Moreover, it is unknown whether pathogens, such as Salmonella Typhymurium, catalyze this transformation. We assessed, therefore, acrolein formation by four GDH-competent strains of S. Typhymurium grown under either aerobic or anaerobic conditions in the presence of 50 mM glycerol. On the basis of analytical derivatization with a heterocyclic amine, all wild-type strains were observed to produce acrolein, but to different extents, and acrolein production was not detected in fermentations of a pduC-deficient mutant strain. Furthermore, we found that, in the presence of calf thymus DNA, acrolein-DNA adducts were formed as a result of bacterial glycerol metabolism by two strains of Limosilactobacillus reuteri, but not a pduCDE mutant strain. The quantification of the resulting adducts with increasing levels of glycerol up to 600 mM led to the production of up to 1.5 mM acrolein and 3600 acrolein-DNA adducts per 108 nucleosides in a model system. These results suggest that GDH-competent food microbes, gut commensals, and pathogens alike have the capacity to produce acrolein from glycerol. Further, the acrolein production can lead to DNA adduct formation, but requires high glycerol concentrations that are not available in the human gut.


Assuntos
Anti-Infecciosos , Propanodiol Desidratase , Acroleína/toxicidade , Aminas , Bactérias/genética , Bactérias/metabolismo , DNA , Adutos de DNA , Glicerol/metabolismo , Humanos , Propanodiol Desidratase/metabolismo
2.
Allergy ; 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35917214

RESUMO

BACKGROUND: Impaired microbial development and decreased levels of short chain fatty acids, particularly butyrate, is suggested to have a role in the development of atopic dermatitis (AD). METHODS: Faecal microbiota composition, abundance of selected bacterial groups and fermentation metabolites were compared at 90, 180 and 360 days of life between 27 children who developed AD by age one (AD group), and 39 controls (non-AD group) among the CARE (Childhood AlleRgy, nutrition and Environment) study cohort. RESULTS: Diversity within the Firmicutes and Bacteroidetes phylum in the faecal microbiota was lower in the AD group compared to the non-AD group. Longitudinal analysis showed multiple amplicon sequence variants (ASV) within the same bacterial family to be differentially abundant. Namely, Ruminococcus bromii, a keystone primary starch degrader, and Akkermansia muciniphila, a mucin-utilizer, had lower abundance among the AD group. Children with AD were less likely to have high levels of faecal butyrate at 360 days compared to those without AD (11.5% vs 34.2%). At 360 days, children with high abundance of R. bromii had higher level of butyrate as well as lower proportion of children with AD compared to children with low abundance of R. bromii (11.1-12.5% vs 44.4-52.5%), which was independent of the abundance of the major butyrate producers. CONCLUSION: Our results suggested that R. bromii and other primary degraders might play an important role in the differences in microbial cross-feeding and metabolite formation between children with and without AD, which may influence the risk of developing the disease.

3.
Front Microbiol ; 13: 848490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615513

RESUMO

Insects are a component of the diet of different animal species and have been suggested as the major source of human dietary protein for the future. However, insects are also carriers of potentially pathogenic microbes that constitute a risk to food and feed safety. In this study, we reported the occurrence of a hemolytic orange pigmented producing phenotype of Lactococcus garvieae/petauri/formosensis in the fecal microbiota of golden lion tamarins (Leontopithecus rosalia) and feed larvae (Zophobas atratus). Feed insects were identified as a regular source of L. garvieae/petauri/formosensis based on a reanalysis of available 16S rRNA gene libraries. Pan-genome analysis suggested the existence of four clusters within the L. garvieae/petauri/formosensis group. The presence of cyl cluster indicated that some strains of the L. garvieae/petauri/formosensis group produced a pigment similar to granadaene, an orange cytotoxic lipid produced by group B streptococci, including Streptococcus agalactiae. Pigment production by L. garvieae/petauri/formosensis strains was dependent on the presence of the fermentable sugars, with no pigment being observed at pH <4.7. The addition of buffering compounds or arginine, which can be metabolized to ammonium, restored pigment formation. In addition, pigment formation might be related to the source of peptone. These data suggest that edible insects are a possible source of granadaene-producing lactococci, which can be considered a pathogenic risk with zoonotic potential.

4.
Environ Microbiol ; 23(3): 1765-1779, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33587772

RESUMO

Glycerol/diol dehydratases (GDH) are enzymes that catalyse the production of propionate from 1,2-propanediol, and acrolein from glycerol. Acrolein reacts with dietary carcinogenic heterocyclic amines (HCA), reducing HCA mutagenicity, but is itself also an antimicrobial agent and toxicant. Gut microbial GDH activity has been suggested as an endogenous acrolein source; however, there is limited information on the potential of the intestinal microbiota to have GDH activity, and what impact it can have on the intestinal ecosystem and host health. We hypothesized that GDH activity of gut microbiota is determined by the abundance and distribution of GDH-active taxa and can be enhanced by supplementation of the GDH active Anaerobutyricum hallii, and tested this hypothesis combining quantitative profiling of gdh, model batch fermentations, microbiota manipulation, and kinetic modelling of acrolein formation. Our results suggest that GDH activity is a common trait of intestinal microbiota shared by a few taxa, which was dependent on overall gdh abundance. Anaerobutyricum hallii was identified as a key taxon in GDH metabolism, and its supplementation increased the rate of GDH activity and acrolein release, which enhanced the transformation of HCA and reduced fermentation activity. The findings of this first systematic study on acrolein release by intestinal microbiota indicate that dietary and microbial modulation might impact GDH activity, which may influence host health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Propanodiol Desidratase , Clostridiales , Glicerol
5.
Appl Microbiol Biotechnol ; 104(24): 10769-10781, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104841

RESUMO

Recovery from stress is an important property for anaerobic digestion (AD). Although AD is quite adaptable with regard to waste composition, new substrates added to stable systems may cause process decline. We tested whether crude glycerol would cause stress to a thermophilic AD microbiome previously stabilized long-term on a low C/N ratio feedstock. Three-percent (v/v) crude glycerol was added to the basal substrate (poultry litter) for two hydraulic retention time (HRT) periods. This caused stress where biogas volume and methane percentage dramatically decreased and VFA levels increased. When the basal substrate was resumed, secondary inhibition occurred, resulting in even greater stress (biogas production ceased, methane 3.6%). Unassisted recovery of system processes required eight HRT periods. In contrast, crude glycerol applied at a lower organic loading rate did not cause inhibition. Crude glycerol caused changes in dominance in the microbial community (16S rRNA pyrotags). Although process resilience was slow, the recovery of digester functions occurred in conjunction with the recovery of community structure, particularly putative syntrophic acetate-oxidizing bacteria. KEY POINTS: • Crude glycerol caused stress in thermophilic co-digestion with poultry litter. • Unassisted resilience of digester functions (methane) required 8 HRT. • Syntrophic acetate-oxidizing bacteria implicated for keystone resilience functions. Graphical abstract.


Assuntos
Glicerol , Microbiota , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano , RNA Ribossômico 16S/genética
6.
Front Microbiol ; 10: 2666, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824453

RESUMO

Besides nutritional components, breast milk contains diverse microbes, which may be involved in colonization of the infant gut. Expressed milk is often stored for few days in the refrigerator. The aim of this study was to determine the abundance, prevalence and diversity of facultative and strict anaerobic bacteria using culture-dependent and -independent methods, and to determine changes in milk microbial and chemical composition during storage. Samples of mature breast milk from 21 women were collected 3-6 months post-partum and were analyzed fresh or after anaerobic storage for 6 days at 4°C. The cultivable bacterial population was analyzed using the most probable number (MPN) method or plate counts and different media. The abundance of major bacterial groups was determined using quantitative PCR and 16S rRNA gene sequencing. Lactose, lactate, short chain fatty acids (SCFA) and human milk oligosaccharides (HMO) were analyzed using chromatography techniques. Highest mean viable cell counts were obtained in yeast casitone fatty acids (YCFA) broth supplied with mucin (log 4.2 ± 1.8 cells/ml) and lactose (log 3.9 ± 1.4 cells/ml), or Columbia broth (log 3.0 ± 0.7 cells/ml). Mean total bacterial counts estimated by qPCR was 5.3 ± 0.6 log cells/ml, with Firmicutes being the most abundant phylum. The most prevalent bacterial groups were Streptococcus spp. (15/19 samples), Enterobacteriaceae (13/19) and Lactobacillus/Lactococcus/Pediococcus group (12/19). While the average total number of bacterial cells did not change significantly during storage, the prevalence of strict anaerobic Bacteroidetes increased threefold, from 3/19 to 9/19, while in 7 samples Clostridium clusters IV or XIVa became detectable after storage. Major HMO were not degraded. Lactate was present in 18/21 samples after storage (2.3-18.0 mM). Butyrate was detected in 15/21 and 18/21 samples before and after storage, respectively, at concentrations ranging from 2.5 to 5.7 mM. We demonstrate enhanced prevalence and/or abundance of viable strict anaerobes from the Bacteroidetes and Clostridiales after 6-day anaerobic storage of human milk. Our data indicate that anaerobic cold storage did not markedly change total viable bacterial load, while HMO profiles were stable. Anaerobic cold storage of human milk for up to 6 days may be suitable for preserving milk quality for potential microbial transfer to the infant gut.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...